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ABSTRACT

In recent years, deep learning has been widely used as an efficient prediction algorithm. However, this 
algorithm has strict requirements on the size of training samples. If there are not enough samples to 
train the network, it is difficult to achieve the desired effect. In view of the lack of training samples, 
this article proposes a deep learning prediction model integrating migration learning and applies it 
to flood forecasting. The model uses random forest algorithm to extract the flood characteristics, 
and then uses the transfer learning strategy to fine-tune the parameters of the model based on the 
model trained with similar reservoir data; and is used for the target reservoir flood prediction. Based 
on the calculation results, an autoregressive algorithm is used to intelligently correct the error of the 
prediction results. A series of experimental results show that our proposed method is significantly 
superior to other classical methods in prediction accuracy.

Keywords
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INTRODUCTION

Flood disasters are natural disasters with high frequency, a wide scope of harm, and a serious impact 
on the safety of people’s lives and property. In July 2021, heavy rainfall in Zhengzhou caused a flood 
disaster that affected 1,844,900 people, resulting in 292 deaths and 47 missing persons, with a direct 
economic loss of 53.2 billion yuan (Su et al., 2021). With the rapid development of China’s economy, 
the economic losses caused by flood disasters have become increasingly serious. The task of flood 
control and disaster reduction is still very arduous. As one of the important nonengineering measures 
for flood control and disaster reduction, flood forecasting plays a key supporting role in flood control 
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and disaster reduction. Using modern information technology to develop high-precision flood forecasts 
can help managers adopt scientific flood-control strategies, which is of great significance to reducing 
the loss of people’s lives and property.

Due to the influence of many factors, such as hydrology, meteorology, topography, and 
vegetation, flood-forecasting technology is a complex, nonlinear model. Many scholars and experts 
have established flood-forecasting models based on the basic principles of hydrology (Icyimpaye et 
al., 2022; Noymanee & Theeramunkong, 2019). However, these models usually need to set a large 
number of parameters, which has a great impact on the prediction results. If the model parameters 
cannot be accurately obtained, the expected effect will not be achieved.

With the rapid development of information technology, machine learning has been widely used 
in various fields. Relying on its strong generalization ability and adaptive learning ability, machine 
learning has also brought innovation and breakthroughs to different industries. Some scholars use 
machine-learning algorithms to establish water-level prediction models and apply them to flood 
forecasting (Ahmed et al., 2022; Wee et al., 2021). In recent years, time-series prediction modeling 
has been one of the key areas of academic concern. Traditional methods focus on parametric models 
generated by professional knowledge, while machine-learning algorithms provide a data-driven 
method to learn dynamic sequences (Masini et al., 2023).

With the improvement of data availability and computing power, deep learning has become the 
research focus of time-series prediction models (Sivakumar et al., 2022). In the learning of time-series 
data, the traditional recurrent neural network (RNN) has many learning bottlenecks and technical 
defects, while the long short-term memory (LSTM) (Sahoo et al., 2019) neural network overcomes the 
shortcomings of the recurrent neural network. LSTM overcomes the bottleneck of gradient explosion 
and gradient disappearance in the learning and training of long time series data and shows a strong 
ability to learn long series data (Sahoo et al., 2019).

Scholars in various fields have begun to use LSTM to predict long time series and have achieved 
good performance (Sagheer & Kotb, 2019). Flood forecasting, as one of the typical scenarios 
for temporal data prediction, has gradually attracted the attention of scholars. These studies have 
established a series of data-driven flood-forecasting models based on historical hydrological data 
(Puttinaovarat & Horkaew, 2020). The studies show that the LSTM neural network has a learning 
advantage for the flood process of long time series, but most of the research results are still confined 
to the simple comparison of network performance. In fact, deep-learning network training requires 
a large number of data samples; too few samples are prone to overfitting problems, resulting in poor 
extension of the trained neural network. Therefore, it is impossible to build intelligent models in 
areas lacking hydrological data. However, the application of transfer learning can effectively solve 
the dilemma of small-sample modeling.

To solve the above problem, this work proposes a deep-learning framework based on hybrid 
LSTM and transfer learning and applies it to flood forecasting. This model uses a transfer-learning 
strategy to pretrain the model using historical data from similar reservoirs and then fine-tune the 
model parameters with the latest data to achieve accurate prediction. To improve the efficiency and 
accuracy of the model, this work adopts the random-forest algorithm to extract flood features and uses 
the autoregressive algorithm to intelligently correct the prediction results. The experimental results 
indicate that this method has obvious advantages for reservoir flood forecasting when historical data 
are lacking.

RELATED WORK

Over the past decades, researchers have established traditional hydrological models based mainly on 
physical mechanisms or concepts for flood forecasting. Generally, these models include three types: 
centralized models (such as the Xin’anjiang model), semi-distributed models (such as TOPMODEL), 
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and distributed models (such as SWAT). However, due to their inherent mechanisms, the prediction 
accuracy of these hydrological models is limited.

The rapid development of computer science and new technologies related to machine-learning, 
data-mining, and optimization algorithms provides new opportunities for the application of machine-
learning methods in the field of flood-forecasting research. Machine learning–based flood-forecasting 
models have gradually become a hot spot in the hydrological field (Mosavi et al., 2018). Among the 
existing machine-learning flood-forecasting models, support vector machines (SVM) and artificial 
neural networks (ANN) are the two most typical models in the field of flood forecasting (Zhang et al., 
2018). SVM has shown good results in flood-forecasting research, and it can select the appropriate 
kernel for different research problems and then select the characteristic elements that are suitable for the 
research purpose to achieve the desired results (Yan et al., 2018). Wu et al. (2019) proposed a support 
vector regression (SVR) model for flood forecasting in mountainous areas, which has satisfactory 
performance in predicting peak flows one to three hours ahead. Faruq et al. (2021) proposed a SVR 
model for predicting flood levels in downstream regions with different lead times. Research has 
shown that SVR can easily predict river water levels within 1 to 12 hours before the predicted time.

The function of an ANN is similar to that of the human brain and nervous system. It has been 
widely used as an effective tool to reveal the nonlinear relationship between input and output. 
Biragani et al. (2016) applied ANN and data-fusion techniques to the mathematical modeling of 
flood forecasting for estimating flood discharge. Dtissibe et al. (2020) used a multilayer perceptron 
to design an ANN model for flood forecasting, which takes the flow as the input–output variable. 
Numerous experiments have demonstrated the predictive ability of the model. With the increase in 
research on ANN models, the limitations of ANN models have also been highlighted, such as the 
disappearance of local optimal solutions and gradients, which limits the application of the model.

Since 2012, deep-learning methods have attracted wide attention in academia and industry 
(Kao et al., 2022), and research on deep-learning methods in the field of hydrological prediction has 
gradually increased, such as nonlinear autoregressive neural networks (Cui et al., 2023), convolutional 
neural networks (Shu et al., 2021), and LSTM neural networks (Liang, 2023; Hu et al., 2019; Moishin 
et al., 2021). Cui et al. (2023) proposed a hybrid model for flood forecasting, which is a nonlinear 
autoregressive neural network with external input integrated with a data-preprocessing module and uses 
wavelet transform for practical sequence decomposition and multigene genetic programming for detail 
scaling so as to effectively solve the highly nonlinear and stochastic problems of flood forecasting.

Liu et al. (2017) proposed a deep-learning method for flow prediction by integrating stacked 
autoencoders (SAEs) and back propagation neural networks (BPNNs), which utilizes both SAE’s strong 
feature representation capability and BPNN’s superior prediction capability. Hui (2020) proposed a 
flood-forecasting model based on a convolutional neural network, adding more influencing factors 
to the model to improve the prediction accuracy.

In recent years, more and more scholars have attempted to use LSTM networks to solve flood-
forecasting problems. Liang (2023) proposed a cycle prediction model of an LSTM neural network 
based on mutual information. This model overcomes the problems that the traditional model has 
in effectively simulating the complex relationship in the hydrological process, the current artificial 
neural network input and output are independent of each other, and the accuracy of medium- and 
long-term hydrological flow prediction is reduced so that the time-series processing ability of the 
LSTM neural network can be fully utilized. Moishin et al. (2021) combined the prediction advantages 
of a convolutional neural network and a LSTM network, constructed a hybrid depth learning 
algorithm to design and evaluate flood-forecasting models, and used daily lagging flood index and 
precipitation time-series data to determine the flood conditions of multiple prediction ranges. Hu et 
al. (2019) proposed a deep-learning framework integrating LSTM and reduced-order models. At the 
same time, the two models are used to represent the flood distribution, which improves the accuracy 
and efficiency of flood forecasting. The application of deep-learning technology has significantly 
improved the accuracy and promoted the development of flood forecasting. However, deep-learning 
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technology has a strict dependence on the size of data samples, and the shortage of data samples 
seriously affects prediction accuracy.

In contrast to the above methods, this study focuses on flood forecasting from another angle. 
In view of the lack of hydrological data in some reservoirs, the combination of transfer-learning 
technology and LSTM is used to improve the accuracy of flood forecasting.

METHODOLOGY

This work takes reservoir flood forecasting as the research object. Based on the collection, collation, 
and cleaning of historical data, the spatiotemporal evolution characteristics of multiple time scales 
are analyzed, and factors that contribute greatly to flood forecasting as the main fields of flood-
forecasting model input are selected. Based on the LSTM neural network, the flood-forecasting 
model is established. On the basis of training with historical data, the transfer-learning strategy is 
introduced to carry out rolling learning on the applied new sample data to reduce the calculation cost 
of flood forecasting. A time-series error-correction model is designed, an intelligent optimization 
strategy is proposed, and intelligent correction of flood forecasting is realized based on error analysis 
and magnitude calculation. The flood forecast and intelligent correction model is shown in Fig. 1.

Flood-Feature Extraction Based on Random Forest
There are many hydrological and meteorological spatiotemporal feature elements that affect flood 
forecasting, many of which have no or only a small contribution to flood forecasting. The number of 
features has a great impact on the training time and training accuracy of the model. Therefore, it is 
necessary to select features that have a greater impact on the results for further modeling. This work 
uses the random-forest algorithm for feature screening.

The idea of the random-forest algorithm is to see how much each feature contributes to each tree in 
the random forest, then average it, and finally compare the contribution between different features (Cakir 
et al., 2021). When using random forest/CART tree, the Gini index value is generally used as the standard 
of the segmentation node, while in weighted random forest, the essence of weight is to assign a larger 
weight to small classes and a smaller weight to large classes—that is, to give a greater punishment to the 
small class. Suppose there are m features X X Xm1 2

, , ,…{ } . To calculate the Gini index score VTM j  of 
each feature X j , that is, the average change in the node splitting impurity of the jth feature in all decision 
trees of the random forest, the calculation formula of the Gini index is as follows:

Figure 1. Reservoir flood forecast and intelligent correction model
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Finally, based on the importance score, the characteristics of hydrological elements with greater 
contribution are selected as the input factors of the flood-forecasting model.

Design of Flood-Forecasting and Intelligent-Correction Model
On the basis of fully analyzing the historical data and extracting the main prediction features, the 
LSTM neural network is proposed to mine the nonlinear mapping relationship between the target 
variables and the observation data of the influence variables. Considering the contribution of the 
prediction results of the latest application data, a transfer-learning strategy is proposed to carry out 
rolling learning on the latest application data to improve the prediction accuracy without increasing 
computing resources.

LSTM Neural Network
The LSTM neural network is a deep-learning framework based on a cyclic neural network. The LSTM 
neural network can capture historical data information at a long time interval, thus solving the problem 
of gradient explosion of the cyclic neural network. LSTM is composed of several storage units that 
store information. Each storage unit realizes the protection and control of information through three 
special gates (input gate, forgetting gate, and output gate).

The forgetting gate ft  determines how much information of the previous cell is retained by the 
current cell, and its value is shown in (6):
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f h x bt f t t f= ⋅ 

 +( )−σ ω

1
, ,	 (6)

where w f  is the weight matrix, bf  is the deviation, and s  is the sigmoid function.
The input gate controls the update of the current input data to the storage unit status value, and 

its value is shown in (7):

i h x bt i t t i= ⋅ 

 +( )−σ ω

1
, ,	 (7)

where wi  is the weight matrix and bi  is the deviation. The new status information ct  can be 
obtained from (8):

c h x bt c t t c= ⋅ 

 +( )−tanh ,ω

1
.	 (8)

Thus, the current status ct  can be obtained as:

c f c i ct t t t t= ⋅ + ⋅−1
 .	 (9)

The output gate ot  controls the output value of the state value of the memory cell, and the value 
is as in (10) and (11), where wo  is the weight matrix and bo  is the deviation.

o h x bt o t t o= ⋅ 

 +( )−σ ω

1
, ,	 (10)

h o ct t t= ⋅ ( )tanh .	 (11)

With the help of three control gates and storage units, LSTM can read, reset, and update long-term 
information. Due to the sharing mechanism of the internal parameters of LSTM, it can be controlled 
by setting the weight matrix.

Transfer Learning
In recent years, machine learning has been widely used in various fields and has achieved success. 
Generally, there are two requirements for the data used in machine learning: one is that the data used 
for training and testing have the same feature space, and the other is that the data used for training 
and testing have the same feature distribution. Once the feature distribution of the data changes, the 
model also needs to be retrained. However, in practical applications, retraining the model is very 
time-consuming and often encounters problems such as insufficient data or lack of a large amount 
of labeled data, which makes it difficult to train better models. To solve the above problems, researchers 
have proposed transfer learning (Zhuang et al., 2020). In transfer learning, the existing knowledge is 
called the source domain, abbreviated as Ds , and the new knowledge to be learned is called the target 
domain, abbreviated as Dr . Transfer learning is learning that helps improve the prediction of the 
target domain by learning the knowledge of the source domain.
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Given a source domain D X f Xs s s= ( ){ },  and learning tasks Ts  and given a target domain 

D X f Xr r r= ( ){ },  and corresponding learning objectives Tr , when D Ds r¹  or T Ts r¹ , use the source 

domain and the learning on the source domain to obtain the prediction function ft ⋅( )  on the target domain. 
In this definition, the feature distribution and feature space together form a domain in transfer learning. That 
is, D P X= ( ){ }χ, . When D D

s r
¹ , there are two situations: χ χs r≠  or P X P Xs r( ) ≠ ( ) , where 

Xs s∈ χ , Xr r∈ χ . Conditional distribution and label space together constitute the task of transfer learning 
T P Y X= { , ( | )}γ . When T Ts r¹ , there are also two situations: γ γs r≠  or P Y P Ys( ) ≠ ( )γ , where 

Ys s∈ γ , Yr r∈ γ . When the source domain and the target domain are the same, the task target is also the 
same, that is, D Ds r=  and T Ts r= ; then, this problem becomes an ordinary machine-learning task.

According to the different attributes of data and labels, the transfer-learning methods can be 
divided into four types. The first is that the label space is the same as the feature space; that is, the 
source data domain and the target data domain are different only in data distribution. The second is 
the difference in feature space; that is, the label space between the two domains is the same and only 
the feature space is different. The third is different tag spaces; that is, the feature spaces between the 
two domains are the same, but the tasks are different. The fourth is that the label space and the feature 
space are not the same. In this case, there are both different tasks and domain offsets. The problems 
to be solved in this paper belong to the first category.

Flood-Forecasting Model
We designed a flood-forecasting model based on LSTM and transfer learning. The model framework is 
shown in Fig. 2. First, the parameters of the LSTM neural network are optimized by global optimization 
based on the sequence model to obtain the optimal network architecture and the optimization model is 
pretrained in the source domain. Then, the first n layers of the neural network, that is, the part shared by 
the source domain and the target domain, are frozen to extract the common features of time-series data in 
the two domains. Finally, the initialized network is migrated to the target domain and the partially frozen 
model is fine-tuned using the data from the target domain. The unfrozen part is retrained to optimize 
the model weight parameters and achieve flood forecasting. By introducing transfer learning, the model 
conducts rolling learning on the new sample data, continuously optimizes the weight parameters of 
the neural network, and improves the accuracy of the model prediction. The input layer contains f*c 
neurons (where f represents the number of features and c represents the time step, which represents the 
impact of some factors in the early stage of the reservoir on the future water level), and they receive the 
water-level feature data from t-1 to t-c. The number of hidden layer nodes is m, indicating the size and 
complexity of the hidden layer. The larger the m, the more complex the model. The output layer is a linear 
network layer containing only one neuron, which is used to output the predicted water level Ht at time t.

Real-Time Correction Algorithm
Real-time correction of flood forecasting involves calculating the forecast error of the hydrological 
forecast model in real time and correcting the model parameters, state, and forecast output value to 
improve the accuracy of flood forecasting. In this paper, the error autoregression model is used to correct 
the flood-forecasting error. The model assumes that the forecasting error has a correlation between the 
front and the back. According to the historical forecasting error series, the correlation is found, and then 
the future error is predicted to correct the original forecasting results. In operational forecasting, an error-
based autoregression model is usually constructed according to the error between the measured value 
and the predicted value in the previous periods of the forecast. Then, according to the correction model, 
the error of the prediction time is calculated and added to the prediction value, which is the corrected 
prediction value at that time (Liang et al., 2021). The autoregressive model is calculated as follows:
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Step 1. Calculate the error sequence at the moment before the flood.

e Q QCt t t= − ,	 (12)

where et  represents the model calculation error at time t, Qt  denotes the measured flow at time 
t, and QCt  is the forecast flow at time t.

Step 2. Establish the functional relationship between the previous error series and the future 
error series.

e c e c e c et L t t n t n t L+ − − + += + + + +
1 2 1 1

 ξ ,	 (13)

where et L+  represents the prediction error at time t, cn  is the regression coefficient (n is the 
regression order of the model, n = 1, 2, 3…), and ξt L+  represents the residual error of the corrected 
prediction model at time t+L.

Figure 2. Flood-Forecasting model based on LSTM and transfer learning
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Step 3. Determine the order of the autoregressive model. The stability of the autoregressive 
model is closely related to the model order n in the formula. In this paper, the Akaike information 
criterion (AIC) order determination criterion is used to determine the optimal order of the model so 
that the minimum value of n of AIC information is the ideal order of the model.

min lnAIC N nn = +σ2 2 ,	 (14)

where N is the total number of data samples and σ represents the standard deviation of the time-
series samples.

Step 4. Calibration regression coefficient. This paper uses the parameter calibration method to 
determine the regression coefficient.

Step 5. Calculate the model-prediction correction value at the next prediction time.

EXPERIMENTS

In this section, we conduct a series of experiments on real-world datasets and compare them with 
some classical methods to verify the advantages of the proposed method.

Datasets
The experiment is based on real datasets of two reservoirs. As shown in Fig. 3, both reservoirs are 
located in the Huai River Basin, with a relatively close geographical location and similar terrain and 
climate conditions. The dataset of Reservoir A contains 139,582 data records, which is more than 
six years of historical data from July 1, 2015, to April 28, 2022. The dataset of Reservoir B contains 
8,937 data records, which is the historical data of one year from July 1, 2020, to July 1, 2021. Each 
of the two datasets contains rainfall station monitoring data and water-level data for different periods. 
The field information of the database is shown in Table 1.

To study the performance of the proposed method in flood-forecasting applications, we extract 
features based on key indicators such as reservoir water level, inflow, outflow, precipitation during 
periods, daily precipitation, weather conditions, and rainfall data observed by rainfall stations. The 
extracted features are used as input data for the prediction model. The model output is the water level 
of the water-level station during different prediction periods.

Comparison Metrics
We use three commonly used performance metrics to comprehensively evaluate the proposed model, 
which are described as follows:

(1) RMSE (root mean square error):

RMSE
y i y i

n
i

n

c
=

( )− ( )
=∑ 1 0

2( )
.	 (15)

(2) MAE (mean absolute error):

MAE
n

y i y i
i

n

c= ( )− ( )
=∑

1
1 0

.	 (16)

(3) NSE (Nash-Sutcliffe efficiency index):
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NSE
y i y i

y i y
i
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c
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n

c

= −
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=

=

∑
∑

1 1 0
2

1 0
2

( )

( )
.	 (17)

In the above formulas, y ic ( )  represents the ith predicted value, y i
0 ( )  represents the ith measured 

value, and y
0
 represents the average of the measured values.

Figure 3. Reservoir location information

Table 1. Main parameters

Attribute Description

TM Time

DPR Time-period precipitation

INTV Time period

DYP Daily precipitation

WTH Weather condition

RZ Reservoir water level

INQ Reservoir inflow

W Storage capacity

OTQ Reservoir outflow

RWPTN Reservoir water potential
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Comparison Methods
To verify the advantages of the proposed method, we compared it with three classic flood-forecasting 
methods, which are described as follows:

(1) 	 SVR. This is an important application branch of the support vector machine, which is used to 
realize regression algorithms and is applied to flood forecasting (Zhang et al., 2018).

(2) 	 LSTM. Long- and short-term memory neural network model for flood forecasting proposed by 
Le et al. (2019).

(3) 	 CNN-LSTM. A coupling model of convolutional neural network and long- and short-term memory 
neural network. In this model, the output of the CNN model is taken as the input of the LSTM 
model, and the output of the LSTM model is fully connected with the final output result (Li et 
al., 2022).

Experimental Results
In this section, we compare the performance of the proposed method with the three baseline methods 
through a series of experiments. In the experiment, we use the trial-and-error method to optimize the 
parameters of various algorithm models. After multiple experiments, it was found that the prediction 
accuracy did not significantly improve after the number of iterations exceeded 1,000. We believe that 
1,000 is the optimal number of iterations. Similarly, the number of iterations for fine-tuning is 200. 
Therefore, in our proposed method, the number of iterations for pretraining is 1,000 and the number 
of iterations for fine-tuning training is 200.

Figure 4 shows the ranking results of the feature importance of reservoir floods based on the 
random-forest algorithm. Features of less than 0.1 importance did not contribute much to the prediction 
result and were no longer retained. These features are often correlated with other important features, 

Figure 4. Feature importance ranking results
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and their influence on the prediction results is indirect. Therefore, six other important features were 
used in subsequent experiments.

In the first experiment, we used different numbers of sample data to train the prediction model 
and selected the latest 500 data points as the test data. In this experiment, the predicted time period 
is set to six hours. Table 2 and Table 3 describe the RMSE and MAE performance of different 
methods, respectively. The RMSE and MAE of all methods decrease with the increase in the number 
of training samples; this means that the increase in training samples can improve the accuracy of all 
prediction models. Obviously, our proposed algorithm has obvious advantages. When the training 
sample reaches 3,000, the values of RMSE and MAE are 0.113 and 0.062, respectively, which are 
far superior to those of the other methods. The advantages of the proposed deep-learning framework 
based on transfer learning have been verified. When the training samples are small our method still 
performs well, indicating that historical data from similar reservoirs is helpful for model parameter 
training. The experimental results also demonstrate that our method can be applied to reservoir flood 
forecasting with less historical data.

Figure 5 shows the performance of different algorithms in the NSE. Our proposed method is 
obviously superior to other algorithms in NSE, especially when the training samples are fewer, and the 
advantages are more obvious. Compared with LSTM, the proposed method adopts the transfer-learning 
strategy and dynamic-adjustment strategy. Due to the lack of sufficient samples, traditional prediction 
methods (such as LSTM and SVR) are difficult to achieve optimal data mapping relationships. In 
addition, these methods lack strategies to correct prediction errors. As a result, they cannot achieve 
the desired results. The proposed model utilizes other reservoir data to train the model and fine-tune 
the model parameters with new training data, thereby improving the predictive ability of the model. 
In addition, the real-time correction of the prediction results further improves the prediction accuracy.

In the next experiment, we mainly observe the performance of various methods in different 
prediction periods. In this experiment, we fixed the number of training samples at 2,000, and the 
prediction period was divided into 1 hour, 6 hours, 12 hours, 18 hours, and 24 hours.

Table 4 and Table 5 provide the calculation results of various methods in RMSE and MAE under 
different forecast periods. Figure 6 shows the comparison results of the NSE of various methods in 
different prediction periods. From the above results, we can see that with the increase in the prediction 
period, the values of RMSE and MAE of all methods decrease; in contrast, the values of NSE increase. 
This indicates that the larger the prediction period, the lower the accuracy of flood forecasting, and 

Table 2. RMSE performance of different training samples

Training Samples 500 1,000 1,500 2,000 2,500 3,000

Proposed 0.188 0.175 0.154 0.138 0.122 0.113

LSTM 0.196 0.189 0.168 0.152 0.144 0.125

CNN-LSTM 0.236 0.214 0.208 0.197 0.186 0.178

SVR 0.389 0.375 0.344 0.321 0.309 0.297

Table 3. MAE performance of different training samples

Training Samples 500 1,000 1,500 2,000 2,500 3,000

Proposed 0.102 0.094 0.088 0.079 0.071 0.062

LSTM 0.145 0.137 0.128 0.121 0.114 0.107

CNN-LSTM 0.164 0.152 0.144 0.136 0.128 0.121

SVR 0.304 0.297 0.288 0.269 0.261 0.250
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all flood-forecasting methods follow this rule. From the experimental results, SVR performed the 
worst, with all metrics significantly worse than those of the other three methods. The performance of 
LSTM and CNN-LSTM is also unsatisfactory, indicating that the size of the dataset has a significant 
impact on traditional prediction models, especially in larger prediction periods. Due to the transfer-
learning strategy alleviating the dependence of long-term prediction on data continuity and diversity, 

Figure 5. NSE performance of different training samples

Table 4. RMSE performance of different prediction periods

Prediction Periods 1 h 6 h 12 h 18 h 24 h

Proposed 0.125 0.138 0.176 0.235 0.292

LSTM 0.147 0.152 0.198 0.269 0.342

CNN-LSTM 0.209 0.236 0.273 0.306 0.353

SVR 0.303 0.321 0.356 0.388 0.413

Table 5. MAE performance of different prediction periods

Prediction Periods 1 h 6 h 12 h 18 h 24 h

Proposed 0.072 0.079 0.088 0.102 0.111

LSTM 0.103 0.120 0.131 0.139 0.147

CNN-LSTM 0.129 0.136 0.145 0.156 0.166

SVR 0.237 0.269 0.274 0.284 0.293
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our proposed method outperforms other baseline methods in different prediction periods. The results 
show that the proposed method is not only effective for small sample datasets, but also very useful 
for large prediction cycles.

DISCUSSION

To show the advantages of the proposed method more intuitively, we forecast the 24-hour water level 
of Reservoir B on August 7, 2020, August 18, 2020, June 7, 2021, and June 14, 2021, and show the 
comparison results in Fig. 7. In the figure, the red solid line represents the measured water-level value, 
and the orange dotted line represents the prediction results of the proposed method. Obviously, the 
proposed method is more consistent with the measured results, which also shows that the prediction 
accuracy of the proposed method is the best. The experimental results also show that the combination 
of transfer learning and LSTM is better for improving the flood data training of reservoirs lacking 
data. As can be seen from Fig. 7, the forecast results of the proposed method are better than LSTM 
for almost the entire forecast period. Such comparison results show that the transfer strategy is very 
helpful for model training, and the historical data of similar reservoirs plays an active role in training 
the model. In addition, the feature extraction method and the error correction method proposed in 
this paper are also helpful to improve the prediction accuracy.

However, there are some aspects of the proposed algorithm that need further demonstration. 
For example, the experimental data used came from two reservoirs with similar geographical and 
climatic conditions. In this case, obtaining relatively ideal results seems to be in line with expectations. 
For the different-reservoir data, whether the ideal forecast results can be achieved needs further 
demonstration. The generalization ability of the model also needs further verification. Whether the 
data samples used for initial training of the model can cover most scenarios has a significant impact 

Figure 6. NSE performance of different prediction periods
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on the generalization ability of the model. Therefore, it is necessary to further test the generalization 
ability of the model and adopt appropriate methods to optimize the model.

CONCLUSION

To improve the accuracy of flood forecasting, especially for reservoirs with scarce historical data, 
this work proposes a deep-learning forecasting model incorporating transfer learning. In order to 
improve the accuracy and efficiency of prediction, this method uses the random-forest algorithm 
for feature extraction. On this basis, LSTM neural network is used to build a prediction model and a 
transfer-learning strategy is introduced into the model. For the problem of reservoir flood forecasting 
that lacks data, we first use historical data of similar reservoirs to train the prediction model, then 
use the data of the target reservoir to fine-tune the model parameters to obtain a flood-forecasting 
model suitable for the target reservoir, and finally use the error autoregressive algorithm to correct 
the forecast results and further improve the forecast accuracy. A series of Experiments shows that 
the proposed method is significantly superior to the classical method in terms of RSME, MAE, and 
NSE. The proposed method can provide a new means for flood forecasting in reservoirs lacking 
hydrological data. However, there are still some problems that need to be further studied, such as 
that the selection of similar reservoirs may have a great impact on the accuracy of the model and 
that other hydrological factors (such as elevation, geography, geomorphology, etc.) may also have a 
certain impact on the forecast results. In future work, we will focus on improving the generalization 
ability of the model and researching intelligent-correction algorithms.

Figure 7. Comparison of prediction results of time-series data
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